JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 1, February 2015 http://dx.doi.org/10.14403/jcms.2015.28.1.139

THE PRESERVATION THEOREMS OF FUZZY (r, s)-SEMI-IRRESOLUTE MAPPINGS

JIN TAE KIM* AND SEOK JONG LEE**

ABSTRACT. In this paper, we prove that (r, s)-semi-irresolute image of the (r, s)-semi- θ -connected set is also (r, s)-semi- θ -connected. Moreover, we prove that an (r, s)-semi-irresolute mapping preserves (r, s)- S^* -closedness.

1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Çoker [5] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and Demirci [6] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. S. Malakar [11] introduced the concept of fuzzy semi-irresolute mappings, and S. H. Cho and J. K. Park [4] established some other properties of fuzzy semi-irresolute mappings on Chang's fuzzy topological spaces. S. J. Lee and J. T. Kim [8] introduced the concept of fuzzy (r, s)-semi-irresolute mappings, and investigated some of their characteristic properties.

In this paper, we prove that (r, s)-semi-irresolute image of the (r, s)-semi- θ -connected set is also (r, s)-semi- θ -connected. Moreover, we prove that an (r, s)-semi-irresolute mapping preserves (r, s)- S^* -closedness.

2. Preliminaries

For the nonstandard definitions and notations we refer to [7, 9, 10].

Received November 26, 2014; Accepted January 27, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A40.

Key words and phrases: fuzzy (r, s)-semi-irresolute, fuzzy (r, s)-semi- θ - T_2 , fuzzy (r, s)-semi- θ -connected, fuzzy (r, s)- S^* -closed.

Correspondence should be addressed to Seok Jong Lee, sjl@chungbuk.ac.kr.

Jin Tae Kim and Seok Jong Lee

DEFINITION 2.1 ([6]). Let X be a nonempty set. An *intuitionistic* fuzzy topology in Šostak's sense(SoIFT for short) $\mathcal{T} = (\mathcal{T}_1, \mathcal{T}_2)$ on X is a mapping $\mathcal{T} : I(X) \to I \otimes I$ which satisfies the following properties:

- (1) $\mathcal{T}_1(\underline{0}) = \mathcal{T}_1(\underline{1}) = 1$ and $\mathcal{T}_2(\underline{0}) = \mathcal{T}_2(\underline{1}) = 0$.
- (2) $\mathcal{T}_1(A \cap B) \ge \mathcal{T}_1(A) \land \mathcal{T}_1(B) \text{ and } \mathcal{T}_2(A \cap B) \le \mathcal{T}_2(A) \lor \mathcal{T}_2(B).$
- (3) $\mathcal{T}_1(\bigcup A_i) \ge \bigwedge \mathcal{T}_1(A_i) \text{ and } \mathcal{T}_2(\bigcup A_i) \le \bigvee \mathcal{T}_2(A_i).$

The $(X, \mathcal{T}) = (X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be an *intuitionistic fuzzy topolog*ical space in Šostak's sense(SoIFTS for short). Also, we call $\mathcal{T}_1(A)$ a gradation of openness of A and $\mathcal{T}_2(A)$ a gradation of nonopenness of A.

DEFINITION 2.2 ([8]). Let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then f is said to be *fuzzy* (r, s)-semi-irresolute if for each intuitionistic fuzzy set $x_{(\alpha,\beta)}$ in X and each fuzzy (r, s)-semiopen set B in Y with $f(x_{(\alpha,\beta)}) \in B$, there is a fuzzy (r, s)-semiopen set A in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq \operatorname{scl}(B, r, s)$.

LEMMA 2.3 ([8]). Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is fuzzy (r, s)-regular semiopen.
- (2) A = scl(sint(A, r, s), r, s).
- (3) A is fuzzy (r, s)-semi-clopen.

LEMMA 2.4 ([8]). Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. If A is a fuzzy (r, s)-semiopen set in X, then scl(A, r, s) is fuzzy (r, s)-regular semiopen in X.

THEOREM 2.5 ([8]). Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

(1) f is fuzzy (r, s)-semi-irresolute.

 \mathbf{S}

- (2) For each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and each fuzzy (r,s)-semi- θ -clopen set B containing $f(x_{(\alpha,\beta)})$, there is a fuzzy (r,s)-semi- θ -clopen set A such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$.
- (3) For each fuzzy (r, s)-regular semiopen set B in Y, $f^{-1}(B)$ is fuzzy (r, s)-regular semiopen in X.
- (4) For each fuzzy (r, s)-semiopen set B in Y,

 $f^{-1}(B) \subseteq sint_{\theta}(f^{-1}(scl_{\theta}(B, r, s)), r, s).$

(5) For each fuzzy (r, s)-semiclosed set B in Y,

$$cl_{\theta}(f^{-1}(sint_{\theta}(B, r, s)), r, s) \subseteq f^{-1}(B).$$

140

The preservation theorems of fuzzy (r, s)-semi-irresolute mappings 141

(6) For each fuzzy (r, s)-semiopen set B in Y,

$$scl_{\theta}(f^{-1}(B), r, s) \subseteq f^{-1}(scl_{\theta}(B, r, s)).$$

3. Main results

DEFINITION 3.1. Let (X, \mathcal{T}) be a SoIFTS and $(r, s) \in I \otimes I$. Then X is said to be fuzzy (r, s)-semi- θ -T₂ if for each intuitionistic fuzzy point $x_{(\alpha,\beta)}$ and $y_{(\gamma,\delta)}$ in X with $x \neq y$, there exist $A \in N_{\mathrm{s}}^{\mathrm{q}}(x_{(\alpha,\beta)})$ and $B \in N_{\mathrm{s}}^{\mathrm{q}}(y_{(\gamma,\delta)})$ such that $\mathrm{scl}(A, r, s) \cap \mathrm{scl}(B, r, s) = \underline{0}$.

THEOREM 3.2. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ be an injective fuzzy (r, s)-semi-irresolute mapping and $(r, s) \in I \otimes I$. If Y is fuzzy (r, s)-semi- θ - T_2 , then X is fuzzy (r, s)-semi- θ - T_2 .

Proof. Let $x_{(\alpha,\beta)}$ and $y_{(\gamma,\delta)}$ be intuitionistic fuzzy points in X with $x \neq y$. Since f is injective, we have $f(x_{(\alpha,\beta)}) \neq f(y_{(\gamma,\delta)})$. Because Y is fuzzy (r,s)-semi- θ - T_2 , there exist $A \in N_s^q(f(x_{(\alpha,\beta)}))$ and $B \in N_s^q(f(y_{(\gamma,\delta)}))$ such that $scl(A,r,s) \cap scl(B,r,s) = 0$ in Y. Since scl(A,r,s) and scl(B,r,s) are fuzzy (r,s)-regular semiopen, by Theorem 2.5, $f^{-1}(scl(A,r,s))$ and $f^{-1}(scl(B,r,s))$ are fuzzy (r,s)-regular semiopen in X. Moreover,

$$f^{-1}(\operatorname{scl}(A,r,s)) \in N^{\operatorname{q}}_{\operatorname{s}}(x_{(\alpha,\beta)}), \ f^{-1}(\operatorname{scl}(B,r,s)) \in N^{\operatorname{q}}_{\operatorname{s}}(y_{(\gamma,\delta)})$$

and

$$\operatorname{scl}(f^{-1}(\operatorname{scl}(A,r,s)),r,s)\cap\operatorname{scl}(f^{-1}(\operatorname{scl}(B,r,s)),r,s)=f^{-1}(\underline{0})=\underline{0}.$$

Hence X is fuzzy (r, s)-semi- θ - T_2 .

DEFINITION 3.3. Let (X, \mathcal{T}) be a SoIFTS and $(r, s) \in I \otimes I$. Then X is said to be

(1) fuzzy (r, s)-semi- θ -disconnected if there exist two fuzzy (r, s)semiopen sets A_1 and A_2 with $A_1 \neq \underline{0}$ and $A_2 \neq \underline{0}$ such that

 $\operatorname{scl}(A_1, r, s) \cap \operatorname{scl}(A_2, r, s) = \underline{0}$ and $\operatorname{scl}(A_1, r, s) \cup \operatorname{scl}(A_2, r, s) = \underline{1}$,

(2) fuzzy (r, s)-semi- θ -connected if it is not fuzzy (r, s)-semi- θ -dis connected.

THEOREM 3.4. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a surjective fuzzy (r, s)-semi-irresolute mapping and $(r, s) \in I \otimes I$. If X is fuzzy (r, s)-semi- θ -connected, then Y is fuzzy (r, s)-semi- θ -connected.

Proof. Suppose that Y is not fuzzy (r, s)-semi- θ -connected. Then there are two fuzzy semiopen sets B_1 and B_2 in Y with $B_1 \neq \underline{0}$ and $B_2 \neq \underline{0}$ such that

 $scl(B_1, r, s) \cap scl(B_2, r, s) = 0$ and $scl(B_1, r, s) \cup scl(B_2, r, s) = 1$.

Since $scl(B_1, r, s) \neq \underline{0}$ and $scl(B_2, r, s) \neq \underline{0}$, we obtain

$$f^{-1}(\operatorname{scl}(B_1, r, s)) \neq \underline{0} \text{ and } f^{-1}(\operatorname{scl}(B_2, r, s)) \neq \underline{0}.$$

Because $\operatorname{scl}(B_1, r, s)$ and $\operatorname{scl}(B_2, r, s)$ are fuzzy (r, s)-regular semiopen in $Y, f^{-1}(\operatorname{scl}(B_1, r, s))$ and $f^{-1}(\operatorname{scl}(B_2, r, s))$ are fuzzy (r, s)-regular semiopen in X. Moreover,

$$scl(f^{-1}(scl(B_1, r, s)), r, s) \cap scl(f^{-1}(scl(B_2, r, s)), r, s)$$
$$= f^{-1}(scl(B_1, r, s) \cap scl(B_2, r, s)) = \underline{0}$$

and

$$scl(f^{-1}(scl(B_1, r, s)), r, s) \cup scl(f^{-1}(scl(B_2, r, s)), r, s)$$

= $f^{-1}(scl(B_1, r, s) \cup scl(B_2, r, s)) = \underline{1}.$

Therefore X is not fuzzy (r, s)-semi- θ -connected.

DEFINITION 3.5. Let (X, \mathcal{T}) be a SoIFTS and $(r, s) \in I \otimes I$. Then X is said to be *fuzzy* (r, s)-S^{*}-closed if for each fuzzy (r, s)-semiopen cover $\{B_{\alpha} \mid \alpha \in \Lambda\}$ of X, there is a finite subset Λ_0 of Λ such that $\bigcup_{\alpha \in \Lambda_0} \operatorname{scl}(B_{\alpha}, r, s) = \underline{1}$.

THEOREM 3.6. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a surjective fuzzy (r, s)-semi-irresolute mapping and $(r, s) \in I \otimes I$. If X is fuzzy (r, s)-S^{*}-closed, then Y is fuzzy (r, s)-S^{*}-closed.

Proof. Let $\{B_{\alpha} \mid \alpha \in \Lambda\}$ be a fuzzy (r, s)-semiopen cover of Y. Then $\{\operatorname{scl}(B_{\alpha}, r, s) \mid \alpha \in \Lambda\}$ is a fuzzy (r, s)-regular semiopen cover of Y. By Theorem 2.5, $\{f^{-1}(\operatorname{scl}(B_{\alpha}, r, s)) \mid \alpha \in \Lambda\}$ is a fuzzy (r, s)-regular semiopen cover of X. Since X is fuzzy (r, s)- S^* -closed, there is a finite subset Λ_0 of Λ such that

$$\bigcup_{\alpha \in \Lambda_0} f^{-1}(\operatorname{scl}(B_\alpha, r, s)) = \bigcup_{\alpha \in \Lambda_0} \operatorname{scl}(f^{-1}(\operatorname{scl}(B_\alpha, r, s)), r, s) = \underline{1}.$$

Because f is surjective, we obtain

$$\underline{1} = f(\underline{1}) = f(\bigcup_{\alpha \in \Lambda_0} f^{-1}(\operatorname{scl}(B_\alpha, r, s))) = \bigcup_{\alpha \in \Lambda_0} \operatorname{scl}(B_\alpha, r, s).$$

Hence Y is fuzzy (r, s)-S*-closed.

142

The preservation theorems of fuzzy (r, s)-semi-irresolute mappings 143

References

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87-96.
- [2] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182-190.
- K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness : Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [4] Seong Hoon Cho and Jae Keun Park, A note on fuzzy semi-irresolute and strongly irresolute functions, Commun. Korean math. Soc. 18 (2003), no. 2, 355-366.
- [5] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [6] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL 67 (1996), 67–76.
- [7] Eun Pyo Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 14 (2004), 234–238.
- [8] Seok Jong Lee and Jin Tae Kim, Properties of fuzzy (r, s)-semi-irresolute mappings in intuitionistic fuzzy topological spaces, International Journal of Fuzzy Logic and Intelligent Systems 11 (2011), no. 3, 190–196.
- [9] Seok Jong Lee and Jin Tae Kim, Fuzzy (r, s)-irresolute maps, International Journal of Fuzzy Logic and Intelligent Systems 7 (2007), no. 1, 49–57.
- [10] Seok Jong Lee and Eun Pyo Lee, Fuzzy (r, s)-semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense, J. Fuzzy Logic and Intelligent Systems 16 (2006), 108–112.
- S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy Sets and Systems 45 (1992), 239–244.
- [12] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375.
- [13] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II 11 (1985), 89–103.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

*

Department of Mathematics Chungbuk National University Cheongju 362-763, Republic of Korea *E-mail*: kjtmath@hanmail.net

**

Department of Mathematics Chungbuk National University Cheongju 362-763, Republic of Korea *E-mail*: sjl@chungbuk.ac.kr